Differentiable robot model class¶
TODO
-
class
differentiable_robot_model.robot_model.DifferentiableFrankaPanda(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel-
training: bool¶
-
-
class
differentiable_robot_model.robot_model.DifferentiableKUKAiiwa(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel-
training: bool¶
-
-
class
differentiable_robot_model.robot_model.DifferentiableRobotModel(urdf_path: str, name='', device=None)¶ Bases:
torch.nn.modules.module.ModuleDifferentiable Robot Model
-
compute_endeffector_jacobian(*args, **kwargs)¶
-
compute_forward_dynamics(*args, **kwargs)¶
-
compute_forward_dynamics_old(*args, **kwargs)¶
-
compute_forward_kinematics(*args, **kwargs)¶
-
compute_inverse_dynamics(*args, **kwargs)¶
-
compute_lagrangian_inertia_matrix(*args, **kwargs)¶
-
compute_non_linear_effects(*args, **kwargs)¶
-
freeze_learnable_link_param(link_name: str, parameter_name: str)¶
-
get_joint_limits() → List[Dict[str, torch.Tensor]]¶ Returns: list of joint limit dict, containing joint position, velocity and effort limits
-
get_link_names() → List[str]¶ Returns: a list containing names for all links
-
iterative_newton_euler(*args, **kwargs)¶
-
make_link_param_learnable(link_name: str, parameter_name: str, parametrization: torch.nn.modules.module.Module)¶
-
print_learnable_params() → None¶ print the name and value of all learnable parameters
-
print_link_names() → None¶ print the names of all links
-
training: bool¶
-
unfreeze_learnable_link_param(link_name: str, parameter_name: str)¶
-
update_kinematic_state(*args, **kwargs)¶
-
-
class
differentiable_robot_model.robot_model.DifferentiableTwoLinkRobot(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel-
training: bool¶
-
-
differentiable_robot_model.robot_model.tensor_check(function)¶ A decorator for checking the device of input tensors