Differentiable robot model class¶
TODO
-
class
differentiable_robot_model.robot_model.
DifferentiableFrankaPanda
(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel
-
training
: bool¶
-
-
class
differentiable_robot_model.robot_model.
DifferentiableKUKAiiwa
(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel
-
training
: bool¶
-
-
class
differentiable_robot_model.robot_model.
DifferentiableRobotModel
(urdf_path: str, name='', device=None)¶ Bases:
torch.nn.modules.module.Module
Differentiable Robot Model
-
compute_endeffector_jacobian
(*args, **kwargs)¶
-
compute_forward_dynamics
(*args, **kwargs)¶
-
compute_forward_dynamics_old
(*args, **kwargs)¶
-
compute_forward_kinematics
(*args, **kwargs)¶
-
compute_inverse_dynamics
(*args, **kwargs)¶
-
compute_lagrangian_inertia_matrix
(*args, **kwargs)¶
-
compute_non_linear_effects
(*args, **kwargs)¶
-
freeze_learnable_link_param
(link_name: str, parameter_name: str)¶
-
get_joint_limits
() → List[Dict[str, torch.Tensor]]¶ Returns: list of joint limit dict, containing joint position, velocity and effort limits
-
get_link_names
() → List[str]¶ Returns: a list containing names for all links
-
iterative_newton_euler
(*args, **kwargs)¶
-
make_link_param_learnable
(link_name: str, parameter_name: str, parametrization: torch.nn.modules.module.Module)¶
-
print_learnable_params
() → None¶ print the name and value of all learnable parameters
-
print_link_names
() → None¶ print the names of all links
-
training
: bool¶
-
unfreeze_learnable_link_param
(link_name: str, parameter_name: str)¶
-
update_kinematic_state
(*args, **kwargs)¶
-
-
class
differentiable_robot_model.robot_model.
DifferentiableTwoLinkRobot
(device=None)¶ Bases:
differentiable_robot_model.robot_model.DifferentiableRobotModel
-
training
: bool¶
-
-
differentiable_robot_model.robot_model.
tensor_check
(function)¶ A decorator for checking the device of input tensors